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Figure 2 shows the variation of CB/CT when 6 varies 
from 90” to 60”. It can be seen first that a strict verticality 
of the apparatus is useless to obtain the best performance: 
the ratio CB/CTis quite constant when 6 decreases between 
90” and 80”. Moreover, the inclination of a closed end 
column does not seem to improve the expected separation. 

CONCLUSION 

The results of this theoretical study are to be seen in an 
experimental perspective: 

(I) The fact that the verticality of the column is not 
important is of practical interest in an experiment, as 
measurements of Soret coefficients of dilute binary so- 
lutions which can be done, using a simple method [ 121 with 
a thermogravitational column closed at both ends. In such 
an experiment an imperfection of the verticality of the 
apparatus is not prejudicial to the measurements and 
moreover, the apparatus is lighter and less expensive than 
one using a continuous flow column because it does not 
need a feed system to provide steady flow through the 
column. 

(2) In the case of a flat plate column closed at both ends, 
the inclination of the apparatus does not seem to improve 
the expected separation. In the state of our results we do 
not know the variation of CB/CT for angles 6 smaller than 
60’ but what we can say is that the more tilted the column 
is the more it approaches an horizontal thermodiffusion cell 
for which there is no appreciable longitudinal separation. 
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NOMENCLATURE 

b. slab thickness ; 
Bi, Biot number, hb/K; 
k convective heat transfer coefficient; 
k 0, reference thermal conductivity at T = T,; 
t, nondimensional time, (zor)/b* ; 
T, temperature; 

r,. driving gas temperature; 

r,, initial temperature; 

X, dimensionless coordinate, x/b; 
x, space coordinate. 

Greek symbols 

% reference thermal diffusivity ; 
B> constant (thermal conductivity coefficient); 
r, time; 

0, dimensionless temperature, (T- T,)/(T,- T,). 
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INTRODUCTION 

THE HIGH temperature range involved and the considerable 
variation of thermal conductivity with temperature for 
many present-day materials require that the variation of 
conductivity with temperature be considered in the analysis 
of the inverse conduction problem. In a previous study [I], 
a minimization technique was developed for the estimation 
of convective heat transfer coefficient and wall temperature 
from experimental temperature data. The current in- 
vestigation represents the extension of this previously 
developed method by taking into consideration 
temperature-dependent thermal conductivity. 

Beck [2] used a finite-difference approximation in 
conjunction with least-square fit procedure as well as 
nonlinear estimate method to solve the inverse conduction 
problem. Howard [3] developed a numerical procedure for 
determining the heat flux to a thermally thick wall with 
variable thermal properties using a single embedded 
thermocouple. His best results were obtained for tempera- 
ture measurements close to the heated surface in con- 
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Table 1. Comparison of present solution with finite-difference solution of [2] 

9(0, r) h,Wm-*K-i 

r, s Present PI @SL T) hU> 5) Present PI 

6 0.0883 0.0838 0.0099 0.0098 536.6 581.7 
7 0.1067 0.1075 0.0158 0.0159 600.6 587.0 
8 0.1144 0.1116 0.0220 0.0212 592.6 598.4 
9 0.1367 0.1367 0.0302 0.0302 674.2 685.3 

10 0.1522 0.1545 0.0386 0.0385 712.9 693.2 
11 0.1654 0.1690 0.0472 0.0472 737.4 730.0 
12 0.1686 0.1639 0.0529 0.0529 718.2 721.9 
13 0.1773 0.1777 0.0605 0.0605 723.6 725.8 
14 0.1844 0.1813 0.0677 0.0676 723.0 725.1 
15 0.1944 0.2040 0.0781 0.0782 753.6 765.0 
16 0.2083 0.2174 0.0862 0.0862 758.3 770.0 

junction with a small computing interval. Moreover a 
numerical approach needs the development of the tempera- 
ture profile right from the initial state whereas an analytical 
approach has the advantage that temperature can be 
directly found at any specified location and time. 

The primary objective of this note is to determine 
convective heat transfer coefficient and surface temperature 
from the measured temperature history at the outer surface 
of the nozzle by taking into account a linear variation of 
thermal conductivity with temperature. 

ANALYSIS 

For brevity, we shall not repeat the first four equations of 
[l]. But owing to temperature-dependent thermal con- 
ductivity, equation (1) of [ 1] is now nonlinear. 

We seek to find the solution of this nonlinear conduction 
equation by employing iterative method [4]. Using this 
method, the effect of the variable thermal conductivity on 
the temperature distribution is taken into account by 
assuming that at any section X in the region 0 <X < 1, 
thermal conductivity remains constant over a small interval 
AX. Considering the constant property solution as an 
initial guess to the foregoing nonlinear problem, an 
iterative scheme is set up for the temperature field for the “i 

+ 1” th iteration to be given by: 

8”‘(.x,t)=l-2 f 
Bi cosR,(l -X) ____~ 

_I (Si2+li+Bi) cosi, 

x exp[-I2:{1 +fl@‘(X,t))t] (la) 

i, tan 1. = Bi. (Ib) 

In the iterative procedure, the term on the right-hand 
side of equation (la) is evaluated from the ith iteration to 
obtain the i+ 1 iterate directly from the left-hand side of the 
equation. The calculation then continues until convergence 
within the tolerance E is achieved. It is important to note 
here that 0’ and f?+’ are already known thermocouple 
temperatures in case of the inverse conduction problem, 
therefore this iteration is not needed. However it is required 
in the computation of temperature field other than the 
thermocouple’s location. In the foregoing solution, Bi is an 
unknown parameter. In the estimation of Bi, one minimizes 

F(Bi) = [0,(X, t)-0,(X, t)], (2) 

where 0, and 8, are, respectively, calculated and measured 
thermocouple temperatures. 

The calculated temperature is, in general, a nonlinear 
function of Bi. A simple procedure approximates at each 
iteration the calculated temperatures by the 
Newton-Raphson iterative procedure (with quadratic con- 
vergence) [l]. This iterative scheme begins with an initial 

value of Bi and continues until IFI is less than, say, 10m4. 
The values of Bi and /I for rapid convergence are 1.5708 [1] 
and 2.718 [4] respectively. 

EXAMPLE 

The iterative procedures discussed in the previous section 
have been utilized for estimating convective heat transfer 
coefficients and surface temperatures for a typical rocket 
nozzle divergent of mild steel in conjunction with experi- 
mentally measured outer surface temperature data [ 11. The 
values of k,, and /I used in this investigation are 57 
W m-i K-’ and - 1.57 [S] respectively. This inverse 
program, in turn, utilized this transient data to determine 
unknown surface conditions. Calculated results are shown 
in Table I. 

For the sake of comparison, the results of this analysis 
are compared with the finite-difference solution. The 
nonlinear conduction equation is solved numerically by 
using two-time-level, Crank-Nicholson implicit method, 
while a Taylor’s Forward Projection method is employed 
to take into account the nonlinearities for achieving 
unconditional stability. The solution procedure is similar to 
that developed by Beck [2]. Twenty space intervals and a 
time increment of 1 s are used for computational purposes. 
Initial time step of 6s is taken for starting the solution. 
Table 1 depicts that the results obtained by present analysis 
are in good agreement with the finite-difference solution. 

CONCLUSIONS 

The present analysis includes the temperature de- 
pendence of thermal conductivity in the solution of the 
inverse conduction problem. Nonlinear heat conduction 
equation is solved using previously developed iterative 
techniques. Based on known thermocouple temperature, 
the solution obtained by this method can be used for 
estimating Biot number. The results of the present analysis 
are compared with finite-diNerence solution of Beck and are 
found in good agreement. 
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